5.3 C
Ottawa
Friday, October 18, 2024

Bionic Finger ‘Sees’ Inside Objects by Poking Them

Date:

A robotic finger’s supersensitive touches could probe inside body parts and circuits

Thank you for reading this post, don't forget to subscribe!
Credit: Thomas Fuchs
in Cell Reports Physical Science, the researchers tested their device by scanning simulated human tissue and electronic circuitry.

“This bionic finger has exciting application prospects in material characterization and biomedical engineering,” says study co-author Zhiming Chen, an engineer at China’s Wuyi University. “The technology could also be incorporated into robots and prosthetics, which is our next research topic.”

The new “finger” contains a carbon fiber tactile sensor, which returns a stronger signal when compressed against stiffer objects. The device moves across an object’s surface, poking several times at each location to feel for increasing levels of pressure. This process can reveal subsurface details, such as hard layers inside softer materials. “When pressed by this bionic finger, hard objects retain their shape, whereas soft objects deform when sufficient pressure is applied,” says Wuyi engineer Jian Yi Luo, the study’s senior author. “This information is transmitted to a computer, along with the recorded position, and displayed in real time as a 3-D image.”

Other imaging methods, including x-ray, PET, MRI and ultrasound, have their own pros and cons. X-rays carry health risks, and other options lack portability or speed. Many are expensive. The new device is unlikely to be significantly cheaper than ultrasound, but it may provide better resolution. “It offers another way of doing things, which has its own advantages in specific contexts,” says University College London engineer Sriram Subramanian, who was not involved in the work. “I don’t think it’s easy to do ultrasound imaging of printed electronic circuits.”

In simulated human tissue, the device pinpointed bones and a blood vessel. For a flexible electronic circuit encapsulated in soft material, it detected a circuit break and an incorrectly drilled hole. “When we make those [devices], we always worry that if something is broken, the only way you can know is to take it apart,” Subramanian says.

The device will struggle to map objects whose outer surface is too hard, and it may miss details underneath hard layers. The researchers plan to extend their invention into more dimensions, however, perhaps probing from other directions as well. “This system might be expanded to multiple fingers, just like our hands, to realize ‘omnidirectional’ detection,” Chen says. “This would enable it to get more complete information.”

This article was originally published with the title “Bionic Finger” in Scientific American 328, 5, 20 (May 2023)

doi:10.1038/scientificamerican0523-20

ABOUT THE AUTHOR(S)

author-avatar

    Simon Makin is a freelance science journalist based in the U.K. His work has appeared in New Scientist, The Economist, Scientific American and Nature, among others. He covers the life sciences and specializes in neuroscience, psychology and mental health. Follow Makin on Twitter @SimonMakin. Credit: Nick Higgins

    know more

    Popular

    More like this
    Related

    Donald Trump Trolled With Debate Banner Over College Football Game

    Democrats have mocked Donald Trump by flying a banner...

    Barcelona reach agreement to sign Szczesny to succeed Ter Stegen

    German Ter Stegen injured. Polish journalist Tomasz Wlodarczyk confirmed that...

    B.C. Interior braces for Chilcotin River landslide flooding

    British ColumbiaB.C. Interior braces for Chilcotin River landslide floodingOn...

    IN PHOTOS | Friday’s Team Canada highlights at Paris Olympics

    SportsOlympicsSummer SportsHighlights of Canadian athletes competing at the Paris...