-6.9 C
Ottawa
Friday, January 10, 2025

Scientists Made A New Kind Of Ice That Might Exist On Distant Moons

Date:

Nature

Thank you for reading this post, don't forget to subscribe!

The “amorphous” solid is denser and could be water “frozen in time”

Milling ordinary ice with steel balls disrupted its crystalline structure and led to a novel, denser version of solid water. Credit: Christoph Salzmann
1.

Haphazard molecules

Normally, when water freezes, it crystallizes and its molecules are arranged into the familiar hexagonal, solid structure that we call ice. Ice is less dense than its liquid form — an unusual property for a crystal. Depending on conditions such as pressure and the speed of freezing, water can also solidify in any of two dozen other regular arrangements. Amorphous ice is different: it has no such order. “You have lots of molecules joining on haphazardly,” says Chaplin.

Two types of amorphous ice have been previously discovered, both in the twentieth century. ‘Low-density’ amorphous ice is the result of water vapour freezing onto a very cold surface, at a temperature lower than –150 ˚C; ‘high-density’ amorphous ice forms by compressing ordinary ice at similar temperatures under high pressure. Although neither type is common on Earth, both are plentiful in space. “Comets are big chunks of low-density amorphous ice,” says Christoph Salzmann, a chemist at UCL and a co-author of the latest work.

The team used a ball mill, a tool normally used to grind or blend materials in mineral processing, to grind down crystallized ice. Using a container with metal balls inside, they shook a small amount of ice about 20 times per second. The metal balls produced a ‘shear force’ on the ice, says Salzmann, breaking it down into a white powder.

Firing X-rays at the powder and measuring them as they bounced off — a process known as X-ray diffraction — allowed the team to work out its structure. The ice had a molecular density similar to that of liquid water, with no apparent ordered structure to the molecules — meaning that crystallinity was “destroyed”, says Salzmann. “You’re looking at a very disordered material.”

The results are “pretty convincing”, says Marius Millot, a physicist at the Lawrence Livermore National Laboratory in California. “This is a great example of how we still have things to understand with water.”

The results matched models produced by scientists on the team at the University of Cambridge, UK, predicting what would happen if regular ice was broken down in this manner. It’s unclear, however, whether the resultant powder truly matches the properties of liquid water, given that it was previously frozen as crystallized ice. Investigating that will require further work.

Big implications

If confirmed, the new form of ice could enable studies of water in a manner that was not possible before. “Liquid water is a strange material,” says Chaplin. “We still don’t know as much about it as we’d like.” For example, it is commonly thought that water is composed of two forms, low-density and high-density water, matching the previously known variants of amorphous ice. The discovery of a medium-density amorphous ice could challenge that idea.

“If medium-density amorphous ice is really connected to liquid water, it would imply that this model is incorrect,” says Salzmann. “It could open up a new chapter in ice research.”

There are implications, too, for understanding other worlds. Some moons in our Solar System, such as Jupiter’s moon Europa and Saturn’s moon Enceladus, have icy surfaces. If two icy areas on such a moon were to rub together because of tidal forces, they could produce medium-density amorphous ice between them through the same shearing process that the researchers used.

The increase in density could create gaps in the surface, producing disruptions on the moons as the ice cracks together. “There would be a massive collapse of the ice,” says Salzmann. “It could have severe implications for the geophysics of the icy moons.”

That could, in turn, have implications for the potential habitability of liquid-water oceans that lie under the ice surfaces on these moons. “One of the key things about those moons is whether you can have an interface between liquid water and the rocks — this is where life could emerge,” says Millot. “Amorphous ice could have a role that we need to understand.”

This article is reproduced with permission and was first published on February 2 2023.

ABOUT THE AUTHOR(S)

author-avatar

    Jonathan O’Callaghan is a freelance journalist covering commercial spaceflight, space exploration and astrophysics. Follow him on Twitter @Astro_Jonny

    know more

    Popular

    More like this
    Related

    Tourists flock to the Cabot Trail, but climate change is making it more costly to welcome them

    Nova ScotiaCape Breton's Cabot Trail is a destination for...

    Island family hit with $345,000 bill from P.E.I. government after oil spill

    An Island family has been handed a $345,915 environmental cleanup...

    Who’s moving to Nova Scotia? Population growth mainly driven by international migration

    Nova ScotiaPopulation growth in N.S. now mainly driven by...

    First Liberal caucus member comes forward to replace Trudeau as others wait for leadership race rules

    PoliticsOttawa MP Chandra Arya is the first Liberal caucus...